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ABSTRACT

A general formalism of quantised charge transfer polarisation waves has been developed. The
nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical
phonons these polarisation fields will give rise to dielectric bipolarons or bipolaron bubbles. In the
weak coupling limit a new class of superconductivity is to be expected.

INTRODUCTION

The relevance of charge transfer excitation to superconductivity was first pointed out by
Varma (1) et al. The idea of such a local short range interaction has since been extended to a variety of
charge transfer excitations (2) in the high T oxides. This paper has its inspiration in the idea of
polarisation waves that goes back to Hopfield 3) and revived recently by Aschcroft (4) with respect to
the high T, oxides. The basic notion of long range dipole-dipole interaction giving rise to a collective
and quantised charge transfer wave is the key ingredient. Some of the detailed calculations are

presented elsewhere (5)

A - POLARISATION WAVE FORMALISM

__We want to make essential points clear. In the Hartree-Fock approximation, the state of an
Unit Cell of CuO; square is a Slater determinant of the occupied lowest energy orbital states.

Consider an excitation a. corresponding to moving one electron from a ground state to an excited state

orbital costing an energy o. Figure 1 gives the relevant energy levels ©) ; figure 1a shows the charge
transfer insulator gap energy Eg for zero-doping, while the arrows in figure 1b indicate the charge

transfer excitation energy ®g to the Fermi level on p-type doping (1 signifying a ligand hole or 2p>
configuration).

PRECEDING PAGE BLANK NOT FILMED
341



—— ELECTRON ENERGY

2p6

zzzzz.zz/ncl9

Zero doping

7 38
(a)

TI7777 3 cl9

p_do_pirg

o 3
(b)

Figure la. Energy band--updoped material
Figure 1b. Energy band--doped material
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+ .« 3 . . . .
We define by ba the operator to describe this excitation, which can be written in terms of the

operator ag of the electronic state

+ +

ba = a, a ¢))

We approximate Hamiltonian of a single cell by

H=E; + Y 0ybgbg 2)

a

Eg . ground state energy

Define a dipole matrix element
3 o=
B(o) = f d'r ¢, x ¢, 3

Where the two orbitals ¢n and ¢y differ by one unit of angular momentum. Introduce the
polarisation operator in the vector direction x for the unit cell by

P, = e T i, (@ (bg + by) @)
a

This operator has the units of polarisation, which is charge times length - analogous to the
1
: o : , fho\2
displacement operator for a harmonic oscillator, which has the unit of length ~{___| . We use the
2mo

symbol Gyy (i) to denote the denote the retarded correlation function of the P operator with itself by

B .
G2 6w = f ¢ (T, P, @ P,©) d7 (5)
0

It is easily evaluated for the non interacting Hamiltonian (2).

2
2e” U U O
o .
o) = T — ©
e (iw) - o,

The quantity - GO (i ) is actually the polarisability a0 (i ®) of the unit cell.

Assuming isotropy
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So far our discussion has been confined to the properties of a single unit cell CuO». However
when one excites dipoles in a cell i, it has long-range dipole-dipole interaction with dipoles of
the cell j, given by

H =X;.¢®R;-R).X ®
Where :
8 3R, R
o, R) = = - —1 (82)
R R

Defining a Fourier transform
Qo .
Tay®) = — Yo, ®) expik . R (8b)
1

We get the resultant Hamiltonian in the k-space as

1
H=Eg+ Y 04babax+ 7 3, Vop®) [ba'k-ﬁ- b;_k][bﬂ'_k+bg'k] )

ak k.op
where :
Vg (kK —4—"5— Zu,(a) Ty () 1y (B) ©b)
Thus the Dyson equation for the correlation function is the matrix equation
Gyy(k, i) = G yk,iw) +— ZGu (k, i @) Tyry (k) Gy - (k, i 00) (10

Solution of this equation will give us the cpllective excitation wave, that we have called charge
transfer polarisation waves. In a cubic symmetry, it is solved to give

4 na
ny = - Suv = 0 K ky (11)
1-4zna | 4810 K2
3 *3Q,
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The quantity-Gyy is the static polarisability of the solid, just as - Ggy is the static

polarisability of the unit cell. This gives us the dielectric function at long wave-length which has the
Lorentz-Lorentz form

8n
1 + 39—0 a (k,w)
el = 4 (12)
T
1 - ?;?i; o (k,m)

The pole and zero of the dielectric function gives us the transverse and longitudinal charge
transfer polarisation waves respectively.

2_ .2 1 42
w, = cog- §-Qp
2 2 2
0)12=mg+§ﬂp (13)

B - THE GAP EQUATION

Interaction between two carriers due to the longitudinal charge transfer waves is given by

4 e

V(Qw) = —————
@) q2 €(q,0)

(14)

Where €(q,0) is the dielectric constant as shown in fig (2), for a finite value of o.
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Fig. (2) - Long wave length
dieiectric constant E(w) ]
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We see immediately that excitations up to @ = w¢ has repulsive interactions between

two carriers and is attractive between wg and w;. A B.C.S. like gap nonetheless appears at the
Fermi Surface. The gap equation is given by

KGE) .. [V a'E€) + 6'2] a&
m 2KT
, Va@r+e

We can mimic the repulsive interaction at frequencies 0 < ® < e and an attractive interaction
between o < ® < W}, by two piecewise constant Kernels

A® =

(15)

k(§.8) =21 0<E8 <

=-A2 w1 <8 <w (16)

We also assume two energy gaps
AE®) =4 0<E<a

=42 w1 <§<wy a7

The gap equation is easily solved to give these two gaps A and Aj.

We have kT¢=1.14 w; exp - .1..- (17a)
A
g-1
where 1: = A2
A D
Withg = In 22
W]

andD= Aj - 122, g

For 2= 6,A1=0.5, %—2-= 0.76 and hw; =0.5 eV, we obtain a T, ~300° k.
w1 1

The same formalism will apply for optical phonons. Using hw; = 0.1 eV,

22225 (corresponding to 0_ 5), A1 =0.3, A2 = 0.7 gives a A = 0.6 and a zero temperature gap
W) [

A1 =36 m eV. We thus see that a dipole lattice or a Lorentz lattice in general can give rise to a
B.C.S. kind of pairing and an energy gap at the Fermi surface, inspite of a net repulsive interaction in
the small frequency range, and the most general solution admits at least more than one energy gap (A2
> Ay).
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C - DIELETRIC POLARONS AND BIPOLARONS

The interaction of the carriers with the longitudianl polarisation field gives rise to polarons

(Feynmann (7). Will it give rise to bipolarons ? The literature is quite scarce on the subject. While the
answer is quite affirmative with the acoustic bipolarons, it seems to be less so with its optical

counterpart. Early (®) calculations seemed to indicate that for a favorable range of the dielectric
constant ratios (8-2- ~ 10 - 20) we may be able to have a dielectric bipolaron. More recent path ®
€0

integral calculations put this ratio even higher. What is certain (10) is that if the carrier behaves like a
localized classical charge (i.e its interaction with polarisation field is recoil less), the phonon-mediated

. . . . e e
interaction will at best reduce the coulomb repulsion between the two charges form —— to — but
ExT EQT

does not lead to any attraction. We can see from figure 1b, that as the p-type doping is increased,
there is an increasing component of low energy excitation wg (wg going down with €f) such that we
expect @; — 0, at some critical doping value Xc, given by equation (13). With the longitudinal

frequency @ — ‘\} 3 Qp and because of the collapse of the Lorentz lattice, we can have the whole

frequency range up to o where the dielectric constant is negative. This low frequency attraction will
give instantaneous local interaction between carriers, giving rise to (fig. 4b) dielectric
bipolarons or bipolaron bubble (if its energy is embedded in the continuum of 1-particle states).
We can model the effective Hamiltonian by

+ + .+
Hy = 2,6 CxCix- V Y Cis Cro Cro Cio (18)
This Hamiltonian is strikingly different form the B.C.S Hamiltonian in not having the @-cut
off and its general behavior pattern has been indicated (11), In the usual weak-coupling approximation

and when the dielectric bipolaron interaction energy V <<€, the superconductivity gap equation has
been solved () to give

A= 8ep exp - (19)
€

Where & is an energy cut-off.

It is necessary to recall the essential ingredients leading to the equation (18) signifying
an instantaneous attractive interaction V between two carriers.

We can define two key dimensionless parameters in the pairing scenarios.

- The dimensionless coupling constant

\
A= EE (203)
- Antiadiabaticity parameter
ho
Y=g (20b)
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Signifying ratio of boson frequency to the Fermi energy.

There are several interesting differences of the electronic properties in the normal state
between the adiabatic (y << 1) and the antiadiabatic (y >> 1) regime. These differences(!2) are

shown schematically in figure (3a) and (3 b), as well as in fig. (4a) and (4b).

*
(@)  The effective mass ratio mﬁ is exponentially large (Holstein factor) around

Y=1(& <1) but is completely unrenormalised in the antiadiabatic limit (5) (fig. 3a).

(b)  The electron life time t at the Fermi surface is quite different in the two regimes. In the

2
adiabatic regime L << kT ~ TE_p’ which gives the usual metallic conductivity. In the
T

antiadiabatic regime l>> kT (fig. 3b) and is conjectured to be ~ T, if it behaves as a marginal
T

Fermi liquid (13).

© In the adiabatic regime, the usual electron-phonon interaction (fig. 4a) gives the
retarded non local attraction between electron-pairs. In the antiadiabatic regime the attraction
is expected to be instantaneous and local (fig. 4b), forming a real-space electron-pair or a
dielectric bipolaron bubble. The resulting normal and superconducting properties are
bound to be different from the classical B.C.S. behavior.

In the B.C.S. behavior

kT, 1
E—I_f =Y exp - x (21a)

In the other limit, y >> 1

In summary, we can say that presence of high frequency bosons (1@ > Ef) will lead to

quasiparticules which are dielectric polarons with properties in the normal and superconducting
states quite different from usual metals.
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Fig. 3a

Fig. (3a) - Effective mass of carriers as function of ¥ = tl_\._u or antiadiabaticity.
Ey
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Fig. 3b

Fig. (3b) - A carrier life timeT as function of temperature
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Fig. 4a

Fig. (4a) - Electron-electron interaction in the adiabatic regime

{

bipolaron bubble

Fig. 4b

Fig. (4b) - Electron-electron interaction in the antiadiabatic regime
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